Pain models display differential sensitivity to Ca2+-permeable non-NMDA glutamate receptor antagonists.
نویسندگان
چکیده
BACKGROUND Ca2+-permeable non-N-methyl-D-aspartate receptors are found in the spinal dorsal horn and represent a presumptive target for glutamatergic transmission in nociceptive processing. This study characterized the analgesic profile associated with the blockade of these spinal receptors by intrathecally delivered agents known to act at these receptors, the spider venom Joro toxin (JST) and philanthotoxin. METHODS Philanthotoxin (0.5, 2.5, or 5 microg) or JST (5 microg) was given spinally before thermal injury to the paw. JST (5 microg) was also given 10 min before subcutaneous formalin injection, after intraplantar administration of carrageenan, and to rats that were allodynic due to tight ligation of spinal nerves. Lower doses of JST (0.25 and 1.0 microg) were given before formalin injection and testing of thermal latencies. Thermal latencies were measured using a Hargreaves box, mechanical thresholds using von Frey hairs, and formalin response by means of counting flinches. RESULTS Both agents blocked thermal injury-induced mechanical allodynia. JST (5 microg) given 1 h after carrageenan blocked induction of thermal hyperalgesia and mechanical allodynia. JST (5 microg) had no effect in the formalin test, on allodynia after spinal nerve ligation, or when given 3 h after carrageenan. The lowest dose (0.25 microg JST) at pretreatment intervals of 60-120 min resulted in modest hypoalgesia during phase 1 formalin and thermal testing. CONCLUSIONS The behavioral effect of intrathecal Ca2+-permeable non-N-methyl-D-aspartate antagonists indicates an important role for this spinal receptor in regulating hyperalgesic states induced by tissue injury and inflammation and reveals an action that is distinct from those observed with other glutamate receptor antagonists.
منابع مشابه
Spinally mediated analgesic interaction between γ-aminobutyric acid B receptor agonist and glutamate receptor antagonists in rats
Background. Many mechanisms are involved in pain transmission in the spinal cord. Therefore, combination of drugs acting on different kinds of mechanisms might be useful for analgesia. We investigated the interaction betweenγ-aminobutyric acid (GABA)B receptor agonist, baclofen, and N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5, orα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ...
متن کاملDifferential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus.
The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were the...
متن کاملGlutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملNeuroprotection in Ischemia Blocking Calcium-Permeable Acid-Sensing Ion Channels
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s)...
متن کاملAMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons.
N-methyl--aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 95 4 شماره
صفحات -
تاریخ انتشار 2001